

USING THE MD SERIES PLC WITH A
THERMISTOR AS A TEMPERATURE

SENSOR

INTRODUCTION

This application note will show how to use any
MD Series PLC as a device to measure and display
temperature using a thermistor temperature sensor.
The main topics covered will be: Choosing the
senor components, designing and wiring the
system, and the program components.

The topics will be discussed in the order stated
above because it the logical order of progression to
design a temperature sensing system of this type.
However, the main focus will be on the last two
sections: Design and wiring the system, and the
program components.

At the end of this application note there will be a
brief description of some of the possible
applications of this system as well as a links
section for additional information on some topics.
Also included with this application note is the
sample program that I will reference in this
document. The sample program will be fully
functional and ready to use for your application. It
is free for anyone who has purchased our product
and can be used for both industry and hobby.

NOTE: This application note will focus on the
Precon Type III Thermistor and using it to measure
indoor temperature. Any specifications referenced
will apply to this thermistor and the indoor
environment and are not necessarily accurate for
any thermistor and any environment.

 1

 2

TABLE OF CONTENTS

1. DESIGNING THE SYSTEM

1.1. INTRODUCTION
1.2. CHOOSING SENSOR COMPONENTS

1.2.1. INTRODUCTION
1.2.2. CHOOSING THE THERMISTOR
1.2.3. THERMISTOR SENSOR TYPES
1.2.4. THERMISTOR ENCLOSURES

1.3. RESISTOR-DIVIDER NETWORK
1.3.1. INTRODUCTION
1.3.2. WHAT A RESISTOR-DIVIDER NETWORK IS
1.3.3. CHOOSING THE RESISTOR

1.3.3.1.Temperature Range
1.3.3.2.Voltage Range
1.3.3.3.Self-Heating
1.3.3.4.Final Choice

1.4. ANALOG TO DIGITAL CONVERTER
1.5. LOOKUP TABLE

2. WIRING THE SYSTEM
2.1. INTRODUCTION
2.2. POWER SUPPLY
2.3. THERMISTOR WIRING
2.4. RESISTOR DIVIDER NETWORK
2.5. ANALOG I/O
2.6. LCD

3. PROGRAM COMPONENTS
3.1. INTRODUCTION
3.2. PROGRAM OVERVIEW
3.3. LOOKUP TABLE – WHAT IT IS
3.4. INITIALIZATION

3.4.1. SAVING TO THE EEPROM
3.4.2. LOADING FROM THE EEPROM

3.5. READING THE ADC VALUE
3.6. CALCULATING THE TEMPERATURE

3.6.1. USING THE LOOKUP TABLE
3.6.1.1.Why it is Used
3.6.1.2.How it is Used

3.6.2. INTERPOLATING VALUES
3.6.2.1.Scenario 1 – Measured ADC value is less than the first value in the lookup table
3.6.2.2.Scenario 2 – Measured ADC value is greater than the last value in the lookup table
3.6.2.3.Scenario 3 – Measured ADC value is within the lookup table

3.7. DISPLAYING TO THE LCD

4. LINKS

 3

DESIGNING THE
SYSTEM

INTRODUCTION

To design the system, a number of steps must be
taken:

1. Choose the sensor components
2. Design the resistor-divider network
3. Get the analog to digital converter (ADC)

values
4. Create the lookup table

These steps will be broken down and explained in
the next 4 sections.

Before I go into the details of each step, I will
explain here the general picture of how the system
will work when it is complete. This will make it
easier to understand the need for each step. The
idea is that the thermistor will sense a temperature
that equates to a certain resistance. This resistance
will be part of a resistor-divider network that will
determine an output voltage based on a constant
input voltage. This output voltage is the signal that
is input to the PLCs ADC, which will be converted
to a 12-bit number inside the PLC. Using a lookup
table that contains a range of 12-bit numbers
representing temperatures and using some math,
this number will be converted into a temperature.
This temperature is then displayed on an LCD
screen.

CHOOSING SENSOR
COMPONENTS

INTRODUCTION

In this section the basics of choosing the right
components to measure temperature in a particular
environment based on a couple of factors will be
discussed. The components that need to be chosen
are the:

• Thermistor Sensor
• Thermistor Enclosure

The factors to be considered when choosing a
thermistor sensor and enclosure that will be
dicussed are:

• Temperature range to measure
• Environmental conditions

The main focus will be on choosing components for
a thermistor that measures indoor temperature.
Specifically, the Precon Type III thermistor will be
discussed.

Please note that there are many possible factors to
consider when choosing the right components for
an application. Each application will have it’s own
requirements and this application note will not
cover them all, nor will it go into much detail. It
will be assumed that you already have knowledge
about thermistors and if you don’t that you will be
learning about them from different sources. The
point of this application note is to show how a
specific thermistor can be used with our MD Series
PLC to measure temperature in an indoor
environment.

CHOOSING THE THERMISTOR

When choosing a thermistor sensor and enclosure
for any application, there are two main factors that
need to be considered:

• Temperature Range
• Environmental Conditions

The temperature range of the Precon Type III
sensor is -35°F to 240°F. This range will meet the
needs of most applications; however, there are
many other sensors from many different
manufactures that will offer different ranges.

The environmental condition that will be discussed
in this application note is indoor air. In this case the
sensor will be placed in a dry area with normal
indoor temperatures. This is the ideal scenario for a
thermistor because they can typically be damaged
by moisture, which is one reason that enclosures are
necessary. Thermistors could be placed in any
environment as long as they have the proper
protection (enclosure).

THERMISTOR SENSOR TYPES

There are many different types of thermistor
sensors but they can all be divided into two main
categories:

• Negative Temperature Coefficient (NTC)
• Positive Temperature Coefficient (PTC)

The most common type of thermistor, and the one
that is used here, is an NTC thermistor. An NTC
thermistors resistance will decrease as its
temperature goes up. A PTC thermistors resistance
will increase as its temperature goes up. Figure 1,

below, shows standard temperature vs. resistance
graphs of an NTC and PTC thermistor. As can be
seen from the graphs, the plot is non-linear with a
downward or upward curve.

The Sensor that is used for this application note is
the Precon Type III NTC Thermistor. This sensor is
listed as being 10 000 Ohms @77°F (25°C). To
view a complete scale of resistance vs. temperature
for this sensor, see the Thermistor temp-resist
chart.pdf. This can also be found in the links section
at the end of this document.

 4

NTC Thermistor - Temp VS Sensor Resistance

0

50000

100000

-10 15 40 65 90

Temp (F)

THERMISTOR ENCLOSURES

Thermistor enclosures are used to protect the
sensors from their environment. There are many
different types of enclosures for many different
environments. Enclosures range from simple epoxy
coating to full plastic and metal casing. Since this
application note is focused on sensing indoor air, an
enclosure is not necessary. However, in the system
being shown, a plastic enclosure that resembles a
thermostat is being used. The name of the
enclosure-sensor combination is KTR3. This is the
data sheet for the KTR3 sensor and enclosure:
KTR.pdf. This can also be found in the links section
at the end of this document.

RESISTOR-DIVIDER
NETWORK

INTRODUCTION

In this section, what a resistor-divider network is
and how to choose the resistor will be discussed.

WHAT A RESISTOR-DIVIDER NETWORK IS
A resistor-divider network is a circuit (or portion of
a circuit) with two or more resistors and a voltage
or current source. The point is to split the voltage in
some way so that you have a certain voltage across
a resistor. In this case the network consists of an
input voltage that is 5V, a thermistor sensor as one
resistor, and a standard resistor as the second
resistor. This is a common way of interfacing a
thermistor sensor to a device that digitally processes
the thermistor reading, such as the MD-Series PLC
used here. Figure 2, below, is a circuit drawing of a
general resistor-divider network.

Se
ns

or
 R

es
is

ta
nc

e
(O

h

PTC Thermistor - Temp VS Sensor Resistance

0

50000

100000

-10 15 40 65 90

Temp (F)

Se
ns

or
 R

es
is

ta
nc

e
(O

h

Figure 1: NTC and PTC Thermistor Graphs

http://www.preconusa.com/oem/temperature/Thermistor%20temp-resist%20chart.pdf
http://www.preconusa.com/oem/temperature/Thermistor%20temp-resist%20chart.pdf
http://www.kele.com/olcat/T1/KTR-ds.pdf

Figure 2: General Resistor-Divider Network

The resistor-divider network that is used in this
application works the same way except that the
thermistor is not a constant resistance as it changes
with temperature. As shown in the circuit below
(Figure 3), there is a constant input voltage (5V), a
variable resistance (Thermistor), a constant
resistance (Resistor), and a variable output voltage
(Vadc) that goes to the analog to digital converter
(ADC) input on the PLC. As the surrounding
temperature changes, the thermistors resistance
changes. This changes the resistance ratio, which
changes Vadc (the ADC input voltage). The
thermistor is already chosen for this application
note and the input voltage (Vin) is already chosen
to be V, so the only component left to choose is the
resistor value. This is discussed in the next section.

 5

Figure 3: Thermistor Resistor-Divider Network

CHOOSING THE RESISTOR

There are a few different factors to consider when
choosing the value of the resistor. The main factors
that need to be discussed are: The temperature
range to be measured, the voltage range that the
ADC will accept, and amount of self-heating that
the thermistor can dissipate.

Temperature Range

Each unique temperature has a constant resistance
and as the temperature of the sensor goes up, its
resistance goes down. A range of temperatures to
measure must be pre-determined so that there is a
fixed range of resistances to use in future
calculations. In this system, the temperature range
was decided to be -10°F to 100°F. This covers most
outdoor temperatures as well as the indoor air
temperatures that this system is designed for. This
gives more flexibility for measuring temperatures in
different locations and environments.

There are a few different ways to get an exact
resistance for a given temperature, including:

1. Complex math
2. Brute force measuring
3. Using a convenient Temperature-Resistance

chart provided by the manufacturer.

In this system, choice number 3 is used. This chart
provides exact resistances for each whole
temperature within the temperature range of the
thermistor in increments of 5°F. Click here to view
the Temperature-Resistance chart for the Precon
Type III thermistor sensor that is used for this
system, or find it in the Links section at the end of
this document. So we know what the resistance of
the sensor is for the temperatures shown between -
10°F and 100°F, giving us a minimum sensor
resistance and a maximum sensor resistance.

Thermistor

Resistor
Vin

Vadc

5V

Voltage Range

This is the range of the Vadc voltage that will be
the input to the ADC on the PLC. This voltage
range is dependant on the previously determined
temperature range and the value of the constant
resistor in the resistor-divider network. Since the
ADC on the PLC accepts voltages in the range of 0-
5VDC, the Vadc voltage range must fall within 0-
5V.

Now we know the range of resistances, the input
voltage, and the range of output voltages, which
only leaves the value of the constant resister. From
here you would an equation for a resistor-divider

http://www.preconusa.com/oem/temperature/Thermistor%20temp-resist%20chart.pdf
http://www.preconusa.com/oem/temperature/Thermistor%20temp-resist%20chart.pdf

 6

network to calculate a resistor that will keep the
Vadc value within that range. Note that Vadc
doesn’t have to be the full 0-5V range. In this
system, Vadc is between 0.6V and 3.5V
approximately, which is sufficient to supply an
accurate range of ADC values. However, there is
more than one resistor value that will give you an
accurate range of ADC values. How do you know
which one to use, or does it even make a
difference? Depending on the resistor value chosen,
the resistor-divider network will experience a
different amount of power dissipation. This affects
the self-heating characteristic of the sensor, which
is explained in the next section.

Self-Heating

A thermistor will be able to dissipate a certain
amount of power before its temperature is raised
1°F. This is different for every thermistor and it
depends on the material/s that its composed of and
the manufacturing process. A standard value, and
the one used for this system, is 1mW/1°F. This
means that for every 1mW of power dissipated in a
thermistor, its temperature will be raised by 1°F.
Obviously self-heating is bad because it means that
the ambient temperature is no longer being
measured, only the temperature of the circuit is
being measured. Since power needs to be
minimized and power is directly proportional to
current, it makes sense to try and limit the current
as much as possible. The larger the resistance of a
circuit the smaller the current and hence, less power
is dissipated. In this system the ambient
temperature will never change more than 0.5°F due
to self-heating.

Final Choice

The resistor used in this system is 15K ohms, which
is big enough to limit self-heating while providing a
range of voltages that fits the ADCs accepted 0-5V
range. This value was basically calculated by trial
and error based on the requirements explained
previously.

ANALOG TO DIGITAL
CONVERTER

The ADC is fairly straightforward. It takes a
voltage (Vadc in this case) and converts into a 12-
bit number that can be used in the PLCs program.
An analog signal of 0V would be 0 when converted
and a signal of 5V would be 4092 when converted.
Therefore, the full scale range of ADC values is 0 –
4092; However, in this system the full scale is not
used, only about 60% of the full scale. This is
because of the temperature range limitations and
ADC input voltage range limitations. If external
circuitry were added, such as a level shifter, then
full scale would be possible. If the ADC were full
range using the same temperature range, the
measurements would be more accurate. However,
in this case it is not necessary to be extremely
accurate since we are only measuring ambient air
temperature. Note that the system is still accurate to
the °F when self-heating and range limitations are
taken into effect.

LOOKUP TABLE

Each Temperature has a certain sensor resistance
associated with it, which determines a certain ADC
input voltage, which becomes a certain numeric
value. This numeric value being the ADC value
between 0 and 4092. Since the graph of temperature
vs. resistance is non-linear for the thermistor sensor,
there is no simple equation that will accurately
calculate the temperature from the ADC value. A
common method for calculating data that comes
from non-linear measurements is using a lookup
table. This is the method used in this system.

A lookup table is a table of data that contains values
over a linearly changing unit of measure. The unit
of measure could be time, distance, temperature,
etc. In this case the unit of measure that data is
based on is temperature. This means that for every
x°F there is corresponding data such as resistance,
ADC voltage, and ADC value. Since the
temperature-resistance chart provided by the
manufacturer has resistance values for every 5°F, it
makes sense to use values in the lookup table that
are within the chosen range. In this case the

temperature range is -10°F to 100°F, so the lookup
table has data for every 5°F within this range.

For example, the temperature -10°F would have a
number of data associated with it. There would be
the sensor resistance, the ADC input voltage
(Vadc), and the ADC value. It is good to have all of
that data when designing the system, but only the
ADC value is necessary when building the lookup
table for the PLC program. Figure 4, below, shows
a picture of the lookup table used to design this

system, or click here to see the Excel version of the
lookup table.

In this lookup table there is other data shown that is
important in designing the system but not important
for determining the temperature within the PLC.
The data that is important for determining the
temperature is highlighted in yellow. There is self-
heating data, temperature error data, and constant
data such as the values of the static components in
the resistor-divider network. All this data is
important for design but not for calculating
temperature in the PLC.

Figure 4: Lookup Table For Temperatures Between -10°F and 100°F

WIRING THE
SYSTEM

INTRODUCTION

In this section, the wiring of the system will be
discussed. There are only 5 components involved in
the wiring, they are:

1. The power supply
2. The thermistor sensor (with or without

enclosure)
3. The resistor-divider network
4. The PLC
5. The LCD display

 7

 The wiring of each component will be discussed
separately but the complete system wiring is shown
in figure 5 below.

Figure 5: Complete System Wiring

24V 0V

REF

COM

ADC

Power
Supply

M-SERIES
PLC

Resistor

REF

5V

0V 0V

5V

Thermistor

Vin Vadc

LCD DISPLAY

14 Pin

POWER SUPPLY

For information on how to wire the power supply,
click here: T100MD888+ Installation Guide.

THERMISTOR WIRING

The thermistor works the same way as a resistor,
such that it has two leads and no polarity.
Therefore, it can easily be wired into the resistor-
divider network as shown above.

RESISTOR DIVIDER
NETWORK

The resistor divider network, by itself, involves the
thermistor and chosen resistor (15K for this
system). The thermistor and resistor are wired in
series and polarity is not a factor.

The network is powered from the 5V reference
voltage on the PLC. For the T100MD888+ PLC,

the reference voltage comes from 3 pins on a DB15
connector as shown below in figure 6. For the
T100MD1616+ / T100MD2424+ PLCs, the 5V
reference voltage comes from a single input screw
terminal on the board that is labeled “+5V”. This
5V reference is actually part of the analog I/O on
the PLC and more information on this is in the
ADC section below.

ANALOG I/O

The analog I/O are designed slightly different for
each of the T100MD Series PLCs. On the
T100MD888+, the analog I/O are accessed through
a DB15 connector as shown in Figure 6 below. On
the T100MD1616+ and T100MD2424+ PLCs, the
analog I/O are accessed through a grouping of
screw terminals. More information on the analog
wiring can be found in the respective installation
guides. These are the direct links:

• T100MD888+ Installation Guide
• T100MD1616+ Installation Guide
• T100MD2424+ Installation Guide

 8

http://www.tri-plc.com/inst-md888.pdf
http://www.tri-plc.com/inst-md888.pdf
http://www.tri-plc.com/inst-md.pdf
http://www.tri-plc.com/inst-md2424.pdf

Figure 6: ADC Pinout for T100MD888+ PLC

LCD

The LCD is connected to the PLC through a 14-pin
ribbon cable and connector that is just plugged into
the LCD on one end and plugged into the PLCs
LCD port on the other end. More information on
wiring the LCD can be found in the installation
guides listed in the “Analog I/O” section above.

PROGRAM
COMPONENTS

INTRODUCTION

In this section, the programming portion of the
temperature sensor system will be discussed. The
program will first be discussed in general, and then
it will be broken into sections. The sections are:

• The Lookup Table
• Saving to the EEProm
• Loading From the EEProm
• Interpolating Values

PROGRAM OVERVIEW

When the PLC is first powered up or when it is
reset, the program goes through the necessary
initialization steps. Next, the PLC reads the
temperature from the ADC a designated number of
times and takes the average value. Then the
measured ADC value is compared against values in
the lookup table and the temperature is calculated

and displayed on the LCD. After the first program
scan, their are no more initializations, so the
program cycles through reading the ADC value,
calculating the temperature, and displaying the
temperature.

LOOKUP TABLE – WHAT IT
IS

In this section, what the Lookup Table is will be
explained and in a later section, how it is used to
determine the correct temperature will be explained.

The Lookup Table is a table that has values
associated with addresses from 1001 to 1026. The
first 3 values are references that are used for
indexing the lookup table and calculating the
temperature. The next 23 values (starting from
address 1004) are ADC values that represent finite
temperatures in increments of 5°F. Figure 7, below,
shows the lookup table that is used for the Precon
Type III sensor. The values can be put into an excel
spreadsheet and that spreadsheet can be converted
into a comma separated file (.CSV), which can be
put into the PLCs EEProm directly using the
EEProm Manager from the I-Trilogi software. This
will be explained further in the Initialization
section.

 9

 10

1001 -100
1002 50
1003 23
1004 564
1005 640
1006 720
1007 808
1008 904
1009 1004
1010 1108
1011 1220
1012 1332
1013 1452
1014 1572
1015 1696
1016 1820
1017 1940
1018 2064
1019 2184
1020 2300
1021 2412
1022 2524
1023 2628
1024 2728
1025 2824
1026 2916

Figure 7: Lookup Table For Precon Type III Sensor

The address’s from 1001 to 1026 are actually data
memory (DM[]) locations in the PLC. Each DM[]

location holds a value that either corresponds to a
reference number (DM[1001] to [1003]) or to an
ADC value (DM[1004] to [1026]). As mentioned
above, the addresses and their corresponding data
can be put directly into EEProm for permanent
storage. In this case, the addresses (1001 to 1026)
would each be an EEProm address and the
corresponding values would be the data held at each
EEProm address.

In Figure 8, below, the lookup table is shown again
with an extra column that explains what the values
are. The first number from the table, -100, is the
lowest temperature in the temperature range being
used. The value “–100” is actually “-10.0°F” but
since the PLC doesn’t do floating point arithmetic,
the value “-10.0°F” must be represented as “–100”.
The same is true for the second value, which is 5°F
represented as 50. This value of 5°F is the
difference in temperature between each ADC value
in the lookup table. This goes back to the
Temperature-Resistance chart that was provided by
the manufacturer of the Precon Type III sensor. The
third number is the # of ADC values
(Temperatures) in the lookup table. The last 23
numbers are the ADC values that will be used to
convert the measured ADC values into
temperatures.

Address Lookup Values Associated Temperatures and Meanings of Lookup Values
1001 -100 -10 degrees is the lowest temperature and is

 used as a reference for calculating the temperature
1002 50 5 degrees between ADC Values
1003 23 Number of ADC Values
1004 564 -10
1005 640 -5
1006 720 0
1007 808 5
1008 904 10
1009 1004 15
1010 1108 20
1011 1220 25
1012 1332 30
1013 1452 35
1014 1572 40
1015 1696 45
1016 1820 50
1017 1940 55
1018 2064 60
1019 2184 65
1020 2300 70
1021 2412 75
1022 2524 80
1023 2628 85
1024 2728 90
1025 2824 95
1026 2916 100

 11

Figure 8: Lookup Table For Precon Type III Sensor with Explanation of Data

The ADC
values from

Address
1004 - 1026

represent
these

temperatures
in degrees F

|
|
|
|
|
|
|
|
|
|
|
|
|

V

INITIALIZATION

There are two main initializations that need to
happen. One is, to save the lookup table values to
the EEProm so that they are stored permanently.
The other is to transfer the lookup table values from
the EEProm to the data memory (DM[]) for quicker
and easier access to the table.

SAVING TO THE EEPROM

The first step in the initialization is to save the
Lookup Table values to EEProm for permanent
storage. This can be done in one of two ways.

1. In the program using a custom function that
is activated on the first scan. Every time the
PLC is powered on or reset, the values
would be saved to EEProm address 1001 to
1026.

2. Using the EEProm manager from the I-
Trilogi software to store a comma separated
file that contains the EEProm addresses
(1001 – 1026) and the corresponding values.

The first option is available but it is only useful for
simulation purposes. It does not make sense to use
this method for implementation with the PLC
because it is a waste of program space and
initialization time, and it use EEProm burn cycles
every time the PLC is powered on or reset.

The second option is better for implementation with
the PLC. The EEProm Manager is a simple tool that
comes with the I-Trilogi software and can be
accessed from the “Controller” menu in the
programming environment. From the “controller”
menu, select “EEPROM Manager” and a window
will pop-up. This is shown below in Figure 9. This
allows you to see what integer and/or string data is
already stored in the PLCs EEProm as well as store

integer and/or string data to the PLC. The data that
is retrieved from the PLC can be saved to a .CSV
file, which can be kept for future use or converted
to a spreadsheet in Excel. The data that is to be
saved to the PLC can be loaded from a .CSV file,

which can be converted from a spreadsheet in
Excel. Included with this application note and
sample program is a .CSV file form of the lookup
table that can be loaded directly into the EEProm
using this EEProm manager.

 12

igure 9: EEPROM Manager

OADING FROM THE EEPROM

he second part of the initialization process is

in the lookup table (1001 – 1026) are used to index

he thermister data are stored in EEPROM starting from 1001

F

L

T
loading the lookup table from the EEProm into
data memory (DM[]). This is done using a custom
function that is activated on the first ladder logic
scan. There are 4000 DM[] variables that are
indexed using the numbers 1 – 4000. The addresses

the DM[] variables and the associated values in the
lookup table are the values of DM[1001] –
DM[1026]. This makes it easy to cycle through
values using loops and to index values numerically.
The custom function that loads the table into the
DM[] is “init” and its code is shown below.

' T
' address 1001 contains the lowest temperature
' address 1002 contains the increment in temperature reading
' address 1003 contains the number of entries in table (n)
' EEPROM #1004 to 1004+n contains the ADC reading that correspond
' to each temperature

 13

DM[3903] = LOAD_EEP(1001) ' lowest temperature
DM[3904] = LOAD_EEP(1002) ' increment in temperature (degree F)
DM[3905] = LOAD_EEP(1003) ' number of entries in lookup table

N = DM[3905] ' needed by FOR NEXT LOOP

FOR I = 1 to N
 DM[3906+I] = LOAD_EEP(1003+I) ' load the ADC readings into RAM
NEXT

DM[3906] = (DM[3906+N]-DM[3907])/N ' average step of ADC reading
Code Taken From Custom Function “Init”

ALUE
t

ep is to read the current temperature into the ADC

The ADC will produce a 12-bit number even
though it is only doing a 10-bit conversion. The 10-

de to take an average of multiple ADC
adings is listed below. This is the first part of the

 = 0

READING THE ADC V

Once the initialization process is complete, the nex
st
as a voltage. This will produce an ADC value that
corresponds to a voltage, which corresponds to a
resistance, which corresponds to a temperature.
Reading the ADC value is quite simple, it involves
reading a number of values from the ADC in a short
period of time and taking the average of these
values in order to obtain a more accurate reading.

bit number that is produced by the ADC is
converted to a 12-bit number inside the PLCs CPU
by multiplying the number by 4. Because of this,
the code to interpret the ADC values must handle
the values as 12-bit numbers with a range of 0 –
4092 full scale. All of the ADC values in the lookup
table (from addresses 1004 – 1026) fall within this
range.

The co
re
ReadTemp custom function.

N
FOR I = 1 to 10
 N = N+ADC(1)
NEXT
DM[3901] = N/10 ' get the average of 10 readings to even out noise
Code Taken From Custom Function “ReadTemp”

, the next step is to
alculate the temperature from this value. As

any thermistor) is non-linear. This means that there
is no equation, that the PLC can compute, that will

CALCULATING THE
TEMPERATURE

After the ADC value is read
c
mentioned in the section “CHOOSING THE
THERMISTOR”, the graph of Temperature-
Resistance for the Precon Type III thermistor (or

calculate the temperature measured based on the
ADC value. This is why the lookup table is used to
compare the measured ADC value against known
ADC values that equate to temperatures. The code
below is taken from the custom function
“ReadTemp”; it calls the function “Lookup”, which
calculates the temperature.

 14

ALL Lookup ' look up temperature corresponding to value in DM[3901] C
 ' the temperature is returned in DM[3902] by LOOKUP custom function.
 ' LOOKUP is saved in Function #255

USING THE LOOKUP TABLE section,

In the section “LOOKUP TABLE – WHAT IT IS”,

e items in the lookup table were discussed. In this

 why a lookup table is used and how it is
used will be discussed. The code below shows all of

DC reading is passed in DM[3901]

th
the code in the custom function “Lookup”.

' A
' temperature computed from lookup table will be returned in DM[3902]
' Table starts from DM[3907], number of table entries in DM[3905]
' DM[3905] contains the average ADC increase per entry in LUT
'--

IF DM[3901] < DM[3907] ' less than the first entry of Lookup table (LUT)
 DM[3902] = (DM[3901]-DM[3907])*DM[3904]/DM[3906] ' extrapolate from first LUT data
 DM[3902] = DM[3902]+DM[390 ' compute the temperature 3]
 RETURN
ENDIF

IF DM[3901] > DM[3906+DM[3905]] ' more than the last entry of Lookup table (LUT)
 DM[3902] = (DM[3901]-DM[3906+DM[3905]])*DM[3904]/DM[3906] ' extrapolate from last LUT data
 DM[3902] = DM[3903]+DM[3904]*(D] ' compute the temperature M[3905]-1)+DM[3902
 RETURN
ENDIF

I = DM[3901]/DM[3906]-5 ' find approximate location to lookup
 ' DM[3906] is the average ADC increment per table entry
IF I < 1: I=1 : ENDIF ' must start from first table entry

IF I > DM[3905] ' temperature is out of range of lookup table
 DM[3902] = DM[3903]+DM[3904]*DM[3905] ' return largest temperature of lookup table + 1 increment
 RETURN
ENDIF ' DATA out of range

WHILE I < DM[3905] ' up to the end of look up table
 IF DM[3901] < DM[3906+I] GOTO @10
 ENDIF
 I = I+1
ENDWHILE

@10 ' The measured value falls between DM[3906+I-1] and DM[3906+I]

'now compute the interpolated temperature increment from DM[3906+I-1]
DM[3902] = (DM[3901]-DM[3906+I-1])*DM[3904]/(DM[3906+I]-DM[3906+I-1])
DM[3902] = DM[3903]+DM[3904]*(I-2)+ DM[3902] ' compute actual value
 ' DM[3902] contains the return value of this function (degree)
Code Taken From Custom Function “Lookup”

 15

 is used because the relationship between the

How it is Used

he lookup table contains ADC values that have

temperature that is being measured will likely never

 the measured ADC value is less than the first entry in the lookup table (1st value = “564” = “–10.0°F”):

Why it is Used

It
measured value (resistance / voltage / ADC value)
and the calculated temperature is not linear. By
creating a table of linearly increasing temperatures
with corresponding non-linear ADC values, there is
a way to calculate the temperature from the
measured ADC value using a combination of
comparison and interpolation. This is discussed in
the next Section.

T
corresponding temperatures that are 5°F different
than the previous and next temperature. Since the

be the exact temperature in the lookup table, a
combination of comparison and interpolation needs
to be used. First the measured number will be
compared against numbers in the lookup table until
it has been placed between to numbers in the table
or it is found to out of range of the table. Then,
using interpolation, the number of positions that the
measured ADC value is away from the base ADC
value (corresponding to –10.0°F) is calculated.
From this calculation, the temperature can be
calculated. This is a general view of the process that
is performed inside the “Lookup” custom function.
Some code that shows how the “Lookup” custom
function determines where the measured ADC
value fits into the lookup table or if the ADC value
is out of range of the lookup table is shown below.

If
IF DM[3901] < DM[3907] ' less than the first entry of Lookup table (LUT)
Code Taken From Custom Function k “Loo up”

 the measured ADC value is greater than the last entry in the lookup table (last value = “2916” = “+100°F”):

If
IF DM[3901] > DM[3906+DM[3905]] ' more than the last entry of Lookup table (LUT)
Code Taken From Custom Function “Lookup”

 the measured ADC value is within the lookup table (between “564” and “2916”):
p

If
I = DM[3901]/DM[3906]-5 ' find approximate location to looku
 ' DM[3906] is the average ADC increment per table entry
IF I < 1: I=1 : EN ' must start from first table entry DIF

WHILE I < DM[3905] ' up to the end of lookup table
 IF DM[3901] < DM[3906+I] GOTO @10
 ENDIF
 I = I+1
ENDWHILE

@10 ' The measured value falls between DM[3906+I-1] and DM[3906+I]
Code Taken From Custom Function “Lookup”

INTERPOLATING VALUES

nce the measured ADC value has been place

position of the measured ADC value from its

O
between two numbers in the lookup table or has
been placed outside of the lookup table, the exact
temperature can be calculated in two steps using
interpolation. The first step is to calculate the

nearest value or between its nearest values
(depending whether it’s in the lookup table or out of
range) and then convert that position value into a
temperature. The second step is to calculate the
temperature that is closest to the temperature
corresponding to the measured ADC value.

 16

cenario 1 – Measured ADC value is less than
the first value in the lookup table

as been placed
utside the lookup table and below the first lookup

ach ADC value in the lookup table corresponds to

 DM[3901] < DM[3907] ' less than the first entry of Lookup table (LUT)

Depending on whether the measured ADC value is
in the lookup table or outside of the lookup table,
these two steps are implemented slightly differently
but in the same sequence and same general form.
These two steps will be explained in more detail in
this section in three different scenarios with code
examples from the sample program. The first
scenario is that the measured ADC value is less
than the first value in the lookup table. The second
scenario is that the measured ADC value is greater
than the last ADC value in the lookup table. The
Third scenario is that the measured ADC value is
within the lookup table.

S

Once the measured ADC value h
o
table value, the approximate number of positions
that the measured ADC value is from the lowest

value is calculated. Then this value is converted
into the approximate temperature variation from the
base temperature (-10.0°F). This is the first step of
interpolation for scenario 1, explained in more
detail below.

E
a temperature that is 5°F different than the previous
and next temperature. Also, the average difference
between ADC values in the lookup table is 102.
This means that every time the measured ADC
value increases or decreases by an average of 102,
the temperature increases or decreases by 5°F.
Using this ratio and the difference between the
measured ADC value and the first ADC value in the
lookup table, the temperature variation from the
base temperature (-10.0°F) can be calculated. This
is the first step in the two-step interpolation process,
which is shown below in the code from the custom
function “Lookup”. It’s the line of code highlighted
in green.

IF
 DM[3902] = (DM[3901]-DM[39 3906] ' extrapolate from first LUT data 07])*DM[3904]/DM[]
 DM[3902] = DM[3902]+DM[3903] ' compute the temperature
 RETURN
ENDIF
Code Taken From Custom Function “Lookup”

he second step is to combine the temperature variation with the base temperature for the exact temperature,

 DM[3901] < DM[3907] ' less than the first entry of Lookup table (LUT)

T
as shown in the code below that is highlighted green.

IF
 DM[3902] = (DM[3901]-DM[39 3906] ' extrapolate from first LUT data 07])*DM[3904]/DM[]
 DM[3902] = DM[3902]+DM[3903] ' compute the temperature
 RETURN
ENDIF
Code Taken From Custom Function “Lookup”

xample:

 the measured ADC value were 100 (< 564, the first LUT value), what would the temperature be?

M[] LOCATON DESCRIPTION VALUE / TYPE

E

If

D
DM[3901] Measured ADC value Measured
DM[3902] Temperature variation and then final temperature. Calculated
DM[3903] Base temperature -100 (= -10.0°F)

DM[3904] Temperature difference between each LUT value -50 (= -5.0°F)
DM[3905] Number of values in lookup table 23
DM[3906] Average difference between ADC values in LUT 102
DM[3907] First value in lookup table 564 (= -10.0°F)
DM[3906+DM[3905]] Last value in lookup table 2916 (= 100°F)
 Memory Values Chart

Using the formula to calculate the temperature variation from the base temperature:
DM[3902] = (DM[3901]-DM[3907])*DM[3904]/DM[3906]

DM[3902] = (100 – 564*50/102)
DM[3902] = (100 – 271) ‘where 271 is rounded down because there is no floating point calculations
DM[3902] = (-171)

Now add the temperature variation (-171) to the base temperature (-100) to get the approximated temperature
using the formula:
DM[3902] = DM[3902]+DM[3903]

DM[3902] = -171 + (-100)
DM[3902] = -271 ‘the actual temperature is –27.1°F

The temperature would be -27.1°F.

Scenario 2 – Measured ADC value is greater
than the last value in the lookup table

Once the measured ADC value has been placed
outside the lookup table and above the last lookup
table value, the approximate number of positions
that the measured ADC value is from the highest
value is calculated. Then this value is converted
into the approximate temperature variation from the
last temperature. This is the first step of
interpolation for scenario 2, explained in more
detail below.

Each ADC value in the lookup table corresponds to
a temperature that is 5°F different than the previous
and next temperature. Also, the average difference
between ADC values in the lookup table is 102.
This means that every time the measured ADC
value increases or decreases by an average of 102,
the temperature increases or decreases by 5°F.
Using this ratio and the difference between the
measured ADC value and the last ADC value in the
lookup table, the temperature variation from the last
temperature (100°F) can be calculated. This is the
first step in the two-step interpolation process,
which is shown below in the code from the custom
function “Lookup”. It’s the line of code highlighted
in green.

IF DM[3901] > DM[3906+DM[3905]] ' more than the last entry of Lookup table (LUT)
 DM[3902] = (DM[3901]-DM[3906+DM[3905]])*DM[3904]/DM[3906] ' extrapolate from last LUT data
 DM[3902] = DM[3903]+DM[3904]*(DM[3905]-1)+DM[3902] ' compute the temperature
 RETURN
ENDIF
Code Taken From Custom Function “Lookup”

The second step is to add the temperature variation
to the last temperature for the exact temperature, as
shown in the code below that is highlighted green.
The last temperature is calculated by adding the

base temperature (-100) and the 5°F per step (50)
multiplied by the number of steps (23), which
equals 100°F.

 17

IF DM[3901] > DM[3906+DM[3905]] ' more than the last entry of Lookup table (LUT)
 DM[3902] = (DM[3901]-DM[3906+DM[3905]])*DM[3904]/DM[3906] ' extrapolate from last LUT data
 DM[3902] = DM[3903]+DM[3904]*(DM[3905]-1)+DM[3902] ' compute the temperature
 RETURN
ENDIF
Code Taken From Custom Function “Lookup”

Example:

If the measured ADC value were 3000 (> 2916, the last LUT value), what would the temperature be?

DM[] LOCATON DESCRIPTION VALUE / TYPE
DM[3901] Measured ADC value Measured
DM[3902] Temperature variation and then final temperature. Calculated
DM[3903] Base temperature -100 (= -10.0°F)
DM[3904] Temperature difference between each LUT value -50 (= -5.0°F)
DM[3905] Number of values in lookup table 23
DM[3906] Average difference between ADC values in LUT 102
DM[3907] First value in lookup table 564 (= -10.0°F)
DM[3906+DM[3905]] Last value in lookup table 2916 (= 100°F)
 Memory Values Chart

Using the formula to calculate the temperature variation from the base temperature:
DM[3902] = (DM[3901]-DM[3906+DM[3905]])*DM[3904]/DM[3906]

DM[3902] = (3000 – 2916*50/102)
DM[3902] = (3000 – 1429) ‘where 1429 is rounded down because there is no floating point calculations
DM[3902] = (1571)

Now add the temperature variation (1571) to the last temperature (-100 + 50 * 22 = 1000) to get the
approximated temperature using the formula:
DM[3902] = DM[3903]+DM[3904]*(DM[3905]-1)+DM[3902]

DM[3902] = -100 + 5*22 + 1571 ‘where the green highlighted part is the last LUT value calculated from the first
DM[3902] = +2571 ‘the actual temperature is +257.1°F

The temperature would be +257.1°F.

Scenario 3 – Measured ADC value is within the
lookup table

Once the measured ADC value has been placed
between two numbers in the lookup table, the
approximate deviance that the measured ADC value
is from the value before it is calculated. Then this
value is converted into the approximate temperature
variation from the LUT value before it. This is the

first step of interpolation for scenario 3, explained
in more detail below.

Each ADC value in the lookup table corresponds to
a temperature that is 5°F different than the previous
and next temperature. Also, the difference between
ADC values in the lookup table can be calculated.
This difference between ADC values is different at
different positions in the lookup table. There are 2
parts to calculating the temperature deviance of the

 18

 19

measured ADC value from the closest smaller ADC
value in the lookup table.

1. The ratio of degrees F to the difference
between ADC values. The degrees F is
always 5°F and the difference between ADC
values depends on the location in the lookup
table as stated above. Code =
DM[3904]/(DM[3906+I]-DM[3906+I-1]).

2. The numeric difference between the
measured ADC value and the closest
smaller ADC value from the lookup table.
Code = (DM[3901]-DM[3906+I-1]).

The temperature deviation, from the lookup table
value before it, can be calculated by taking the
numeric deviation of the measured ADC value from
the lookup table value before it and multiplying it
by the ratio of degrees F to the difference between
ADC values. This will convert the numeric
deviance into the temperature deviance. This is
performed by multiplying the code from #1. above
by the code from #2. above, as shown in the sample
code below.

@10 ' The measured value falls between DM[3906+I-1] and DM[3906+I]

 ' now compute the interpolated temperature increment from DM[3906+I-1]

DM[3902] = (DM[3901]-DM[3906+I-1])*DM[3904]/(DM[3906+I]-DM[3906+I-1])
DM[3902] = DM[3903]+DM[3904]*(I-2)+ DM[3902] ' compute actual value

' DM[3902] contains the return value of this function (degree)
Code Taken From Custom Function “Lookup”

The second step is to add the temperature variation
to the closest smaller temperature, calculated from
the lookup table, for the exact temperature, as
shown in the code below that is highlighted green.
This is done in 2 steps:

1. Calculating the temperature, from the
lookup table, that is the closest smaller
temperature from the measured temperature.
Code = DM[3903]+DM[3904]*(I-2).

2. Adding the previously calculated
temperature deviance to the temperature
from #1. above. Code = DM[3902].

The temperature from the lookup table that the
temperature deviance was calculated from is
calculated by adding the base temperature (-100)
and the 5°F per step (50) multiplied by the number
of steps (I - 2). The exact temperature is calculated
by adding the values of #1. and #2. from above, as
shown in the green highlighted code from the
sample code below.

@10 ' The measured value falls between DM[3906+I-1] and DM[3906+I]

 ' now compute the interpolated temperature increment from DM[3906+I-1]

DM[3902] = (DM[3901]-DM[3906+I-1])*DM[3904]/(DM[3906+I]-DM[3906+I-1])
DM[3902] = DM[3903]+DM[3904]*(I-2)+ DM[3902] ' compute actual value

' DM[3902] contains the return value of this function (degree)
Code Taken From Custom Function “Lookup”

Example:

If the measured ADC value was 1000 (between 904 and 1004 from LUT) and I was 6 (I is the # of positions
that 1004 is from the base value, 564, + 1), what would the temperature be?

DM[] LOCATON DESCRIPTION VALUE / TYPE
DM[3901] Measured ADC value Measured
DM[3902] Temperature variation and then final temperature. Calculated
DM[3903] Base temperature -100 (= -10.0°F)
DM[3904] Temperature difference between each LUT value -50 (= -5.0°F)
DM[3905] Number of values in lookup table 23
DM[3906] Average difference between ADC values in LUT 102
DM[3907] First value in lookup table 564 (= -10.0°F)
DM[3906+DM[3905]] Last value in lookup table 2916 (= 100°F)
 Memory Values Chart

Using the formula to calculate the temperature variation from the base temperature:
DM[3902] = (DM[3901]-DM[3906+I-1])*DM[3904]/(DM[3906+I]-DM[3906+I-1])

DM[3902] = ((1000 – 904)*50/100)
DM[3902] = (96 / 2) ‘where 452 is not rounded down because there is no remainder
DM[3902] = (48)

Now add the temperature variation (548) to the closest smaller temperature, calculated from the lookup table,
(-100 + 50 * (I – 2) = 100) to get the exact temperature using the formula:
DM[3902] = DM[3903]+DM[3904]*(I-2)+ DM[3902]

DM[3902] = -100 + 50*4 + 48 ‘where the green highlighted part is the closest smaller temperature,

‘calculated from the lookup table
DM[3902] = +148 ‘the actual temperature is +46.8°F

The temperature would be +14.8°F.

The three scenarios that were just explained cover the possible situations that the program will have to handle,
as far as measuring temperature. Once the temperature has been calculated, the next step is to display it on the
LCD. This is explained in the next section.

DISPLAYING TO THE LCD

This part of the program is quite simple, as it only involves one line of code that is shown below.

SETLCD 1,1, "Temp ADC1="+STR$(DM[3902]/10)+"."+STR$(ABS(DM[3902] MOD 10))+" "
Code Taken From Custom Function “ReadTemp”

There is 3 parts to the line of code that displays the
calculated temperature:

1. Standard text describing the value
(temperature in this case). Code = "Temp
ADC1="

 20

2. The part of the temperature before the decimal
point. Code = STR$(DM[3902]/10)

 21

3. The part of the temperature after the decimal
point. Code = STR$(ABS(DM[3902] MOD
10))+" "

These 3 parts are concatenated together using the “+”
sign (with no quotes). Parts 2 and 3 come from the
calculated number that represents temperature. Since the
PLC doesn’t do floating-point calculation, the
temperature that was calculated has to be split into 2
different numbers. The 2 numbers include:

1. The original number divided by 10, rounded
to the next lowest whole number. Code =
DM[3902]/10

2. The remainder from the original number
divided by 10. Code = ABS(DM[3902] MOD
10)

The code from #1. is self explanatory. The calculated
temperature that is stored in DM[3902] is divided by 10
and automatically rounded down to the nearest whole
number.
The code from #2. may not be so obvious. The “ABS()”
part of the code is an absolute value function. It is
necessary because the measured and calculated
temperature could be negative and since the remainder is

to be displayed as a decimal number, it can’t be
negative. The “MOD” part of the code is a modular
function that calculates the remainder of a number
divided by another number. In this case, the number
being divided is the calculated temperature (DM[3902])
and the number dividing it is 10.

For example:

If the temperature calculated is 14.8°F, the number,
stored in DM[3902], that represents this
temperature is 148.
The code STR$(DM[3902]/10) will convert 148 in
“14” by dividing by 10 and converting into a string
using STR$.
The code STR$(ABS(DM[3902] MOD 10))+" " will
convert 148 into “8” by taking the remainder of 148/10
and converting it into a string using STR$.

That concludes the explanation of the sample
program and the application note. The next section
contains some links for further information on the
topics covered in this application note.

'This function will take in a number of ADC readings and calculate the average for a more stable reading.
'It will then call the Lookup function that calculates the temperature using the ADC reading in a comparison
'with a lookup table and some interpolation.

N = 0
FOR I = 1 to 10
 N = N+ADC(1)
NEXT
DM[3901] = N/10 ' get the average of 10 readings to even out noise

CALL Lookup ' look up temperature corresponding to value in DM[3901]
 ' the temperature is returned in DM[3902] by LOOKUP custom function.
 ' LOOKUP is saved in Function #255

SETLCD 1,1, "Temp ADC1="+STR$(DM[3902]/10)+"."+STR$(ABS(DM[3902] MOD 10))+" "
Code Taken From Custom Function “ReadTemp”

 22

LINKS

Thermistor Info
http://www.kele.com/tech/monitor/Temperature/TRefTem4.html

Temperature-Resistance Chart
www.preconusa.com/oem/temperature/Thermistor%20temp-resist%20chart.pdf

Self Heating
www.betatherm.com/selfheating.php
http://www.facstaff.bucknell.edu/mastascu/eLessonsHTML/Sensors/TempSensorsSelfHeat.htm

Thermistor Dissipation Constant
www.betatherm.com/dc.php

http://www.kele.com/tech/monitor/Temperature/TRefTem4.html
http://www.preconusa.com/oem/temperature/Thermistor%20temp-resist%20chart.pdf
http://www.betatherm.com/selfheating.php
http://www.facstaff.bucknell.edu/mastascu/eLessonsHTML/Sensors/TempSensorsSelfHeat.htm
http://www.betatherm.com/dc.php

	USING THE MD SERIES PLC WITH A THERMISTOR AS A TEMPERATURE SENSOR
	INTRODUCTION
	TABLE OF CONTENTS
	
	DESIGNING THE SYSTEM
	INTRODUCTION
	CHOOSING SENSOR COMPONENTS
	INTRODUCTION
	CHOOSING THE THERMISTOR
	THERMISTOR SENSOR TYPES
	
	THERMISTOR ENCLOSURES

	RESISTOR-DIVIDER NETWORK
	INTRODUCTION
	WHAT A RESISTOR-DIVIDER NETWORK IS
	CHOOSING THE RESISTOR
	Temperature Range
	Voltage Range
	Self-Heating
	Final Choice

	ANALOG TO DIGITAL CONVERTER
	LOOKUP TABLE

	
	WIRING THE SYSTEM
	INTRODUCTION
	
	POWER SUPPLY
	THERMISTOR WIRING
	RESISTOR DIVIDER NETWORK
	ANALOG I/O
	
	LCD

	PROGRAM COMPONENTS
	INTRODUCTION
	PROGRAM OVERVIEW
	LOOKUP TABLE – WHAT IT IS
	
	INITIALIZATION
	SAVING TO THE EEPROM
	
	LOADING FROM THE EEPROM

	
	READING THE ADC VALUE
	
	CALCULATING THE TEMPERATURE
	
	USING THE LOOKUP TABLE
	
	Why it is Used
	How it is Used

	
	INTERPOLATING VALUES
	Scenario 1 – Measured ADC value is less than the first value in the lookup table
	
	Scenario 2 – Measured ADC value is greater than the last value in the lookup table
	
	Scenario 3 – Measured ADC value is within the lookup table

	DISPLAYING TO THE LCD

	LINKS

