
Configuring the MMI6050 as a Slave

The MMI6050 is a master by default and is able to connect to a single PLC slave via
RS232 or RS485.

It is possible to configure the MMI6050 as a Modbus slave (either ASCII or RTU) so that
the PLC can become the master.

This document will briefly describe the benefits and considerations of using the HMI as a
slave and then describe how to configure the HMI as a slave as well as how to interact
with the HMI from the PLC program. A sample program for the HMI called “HMI
Configured as Modbus RTU Slave.mtp” (done in EB8000) and a sample program for the
PLC called “MMI6050 Configured as Modbus RTU Slave.PC6” (done in TRiLOGI) will be
packaged with this document for download and will be referenced in this document for
example purposes. The configuration process will be described for Modbus RTU only
since both sample programs use Modbus RTU.

Benefits

The PLC can communicate with additional devices that are configured with the same
protocol as the HMI (either Modbus ASCII or RTU).

The PLC CPU will not be interrupted frequently as the PLC program will dictate how
often the PLC communicates with the HMI.

The PLC program can check every command to verify a successful response was
received.

Considerations

HMI objects are not directly linked PLC I/O, register, or memory, so the PLC must be
programmed to map the necessary data to the HMI.

The TRi_PLC protocol cannot be used when the HMI is a slave; so only integer data can
be mapped to the HMI, but not string data.

The HMI cannot directly indicate whether communication has been lost.

HMI Configuration and Setup

Configure the MMI6050 as a Modbus RTU Slave:

When you start a new project with EB8000 the “System Parameter Settings” window will
pop up. This is where you configure the MMI6050 protocol, which will be Modbus RTU
as a slave. You can also get to this window by selecting “System Parameters” from the
Edit menu. Do the following to setup the HMI protocol:

1. Select “New” so that the “Device Properties” window pops up, which allows a
new device to be added – the PLC in this case.

2. Select “MODBUS Server” as the PLC type, which is used for Modbus RTU as a
slave. Refer to Figure 1 below.

3. Choose the type of serial connection from the “PLC I/F” menu, which should
either be RS232 or RS485 depending on how the HMI will be connected to the
PLC.

4. Set the “PLC default station no.” to the ID currently configured for the PLC
(default is 01).

5. Click on the “Settings” button beside the COM field to select the HMI COM port
being used and to configure the baud settings. A new window will open where
you need to select the COM port and set the baud rate, data bits, parity, and stop
bits so that they match what is set in the PLC. The default baud settings for the
PLC are 38400, 8 data bits, no parity, and 1 stop bit. Refer to Figure 2 below. For
the MMI6050, choose COM1 since that is the only option.

6. The setup is complete, so you can accept the changes and do any other
necessary configuration.

Figure 1: PLC Protocol Configuration in EB8000

Figure 2: HMI Baud Rate Configuration in EB8000

Word and Bit Addresses used in the HMI

Since the HMI is used a slave, any HMI objects that exchange data with the PLC use the
HMI memory locations, which the PLC program will end up reading from and writing to.
The easiest way to map data between the HMI and PLC is to use the “LW” memory
locations for data words (i.e. Mapping DM[] variables) and the LW_Bit locations for data
bits (ie. Mapping digital I/O).

There are 9000 LW memory locations available to the user in the HMI memory, which
are between 0 and 8999 (LW addresses 9000 and up are reserved for the HMI).

The LW_Bit locations are grouped in 16-bit words and shared with the LW locations.
This means you need to be careful not to overlap the LW locations being used as words
with the ones used as bits.

The LW-Bit addressing is as follows:

Address Range LW Location Bit Locations
0 to 15 0 0 to 15 of LW0
100 to 115 1 0 to 15 of LW1
200 to 215
…

2 0 to 15 of LW1

899900 to 899915 8999 0 to 15 of LW8999

Configuring HMI Word and Bit Objects

The sample HMI program “HMI Configured as Modbus RTU Slave.mtp” will be referred
to here.

If you open the ND_0 numeric display object properties (the object with the “DM[1]” label
above it), you will see the address is set to LW 1. Refer to Figure 3 below. This is all you
have to do in the HMI for that particular object because the address will be mapped to
DM[1] in the PLC program, since the PLC will be the master.

Figure 3: Object properties for ND_0 in HMI program

If you open the BL_0 bit lamp object properties (the object with the “In 1” label on it), you
will see the address is set to LW_Bit 400100. Refer to Figure 4 below. As per the above

address map table, this is using bit 0 of LW 4001. This is all you have to do in the HMI
for that particular object because the address will be mapped to digital input #1 in the
PLC program, since the PLC will be the master.

Figure 4: Object properties for BL_0 in HMI program

Mapping Data and I/O to the HMI in the PLC Program

Normally, the HMI is the master and the PLC is the slave and no PLC programming is
necessary for communication between the HMI and PLC in that scenario. However, the
PLC is the master in this case so it is the one that sends commands to read and write
data in the HMI.

Since the LW memory locations are being used for data words and bits (LW_Bit) in the
HMI, it is possible to use the WRITEMODBUS and READMODBUS commands for all
communication because the LW memory is mapped to the 4x Modbus holding register
locations that these commands can easily access.

Here is a memory map between the LW locations in the HMI, the Modbus offset address
used in the PLC commands, and the data or I/O register it corresponds to.

LW
Address in
HMI

LW Bit
Range

Modbus Offset Address for
WRITEMODBUS and
READMODBUS

Data Register or I/O Range
in the PLC

1 N/A 1 DM[1]
2
….
….

N/A
….
….

2
….
….

DM[2]
….
….

4000 N/A 4000 DM[4000]
4001 400100 to

400115
4001 INPUT[1] (1st 16 digital inputs)

4002 400200 to
400215

4002 OUTPUT[1] (1st 16 digital outputs)

5001 N/A 5001 ADC(1) (analog input #1)
5002 N/A 5002 ADC(2) (analog input #2)

NOTE: This memory map is only a suggestion and was used for the HMI and PLC
sample programs provided with this write-up; however, a different map between the HMI
and PLC could be created. This map could also be extended to include additional PLC
registers and memory.

The PLC Code

The PLC sample program included with this document is “MMI6050 Configured as
Modbus RTU Slave.PC6”. Below are simple examples of PLC code based on the
sample program code.

Example #1: Writing the Value of DM[1] to the HMI

You would use the following command in a TBASIC custom function to write the current
value of DM[1] into the corresponding LW register in the HMI (per the above memory
table).

WRITEMODBUS 11,1,1, DM[1]

The first parameter 11 means the command is in Modbus RTU and is being sent out of
COM1 on the PLC.

The second parameter 1 means the PLC ID is 01. Normally you would put the ID of the
slave device, not the PLC, but the MODBUS SLAVE protocol in the MMI requires that
the ID be of the master device, which is the PLC in this case.

The third parameter 1 is the MMI memory address - LW1, which is what has been
designated as DM[1] for this write-up and the accompanying sample programs.

The fourth parameter DM[1] is the data, which will be the value stored in DM[1].

Example #2: Reading the Value of DM[1000] from the HMI

It is also possible for a DM[] value to be entered on the HMI and read by the PLC. You
would use the following command in a TBASIC custom function to read the current value
of DM[1000] from the corresponding LW register in the HMI (per the above memory
table) and write it into the actual DM[1000] address in the PLC.

DM[1000] = READMODBUS (11,1,1000)

The three parameters are the same as the first three parameters from the above
WRITEMODBUS command, except the address is 1000 and is mapped to LW1000 in
the HMI.

IMPORTANT NOTE:
When communicating with the HMI from the PLC, the device ID must be the ID of
the master (source device), which is the PLC, instead of the slave (destination
device).

Normally you would put the ID of the slave device, not the PLC, but the MODBUS SLAVE
protocol in the MMI requires that the ID be of the master device, which is the PLC in this
case.

